
 
     :: PLATFORM: 

BALANCED AND CONTROLLED 

 

BY TEAM VIDYUT 

 

 

Summer project completed under   
Electronics club, IIT Kanpur 

 



Table of contents 

1. Executive Summary 

2. Project Description 

2.1 Motivation 

2.2 Objectives and Goals 

3. Initial Research 

3.1 Initial Research of Coding Implementation 

3.2 Inertial Measurement Module 

3.3 Kalman and Complimentary filters 

3.4 DCM Algorithm / PID Control Unit 

3.5 FreeIMU Libraries 

3.6 Power Supply 

3.7 Components 

4. Prototype  

4.1 Hardware Selection 

4.1.1 6 DOF IMU 

4.1.2  Motor 

4.2 Mechanical Model 

4.2.1 Horizontal and Vertical 

4.2.2 Detailed Overview Prototype   

 

 



1. Executive Summary 
 

 

Basically self-balancing platform consists of platform which is balanced 

by movement of three motors in opposite direction to the movement of 

the platform. Arduino Mega process the tilt angles obtained from IMU 

and give instruction to the respective servo motors   to rotate by certain 

angle depending on its previous position to balance or control the 

platform. IMU consists of ADXL345 Accelerometer and ITG3200 

Gyroscope whose outputs are calibrated properly by using FILTER to 

give the precise angle. This angle is sent to PID or DCM algorithm 

which measures the error i.e. how far the current position of platform is 

from the desired set point (balancing point). The algorithm attempts to 

minimize the error by adjusting the process control inputs. 

 

  



2. Project Description 

2.1 Motivation  

That’s fancy speak for the technology that enables balancing. With 

advent of self-balancing devices, be it Segway, DIY, or TIPI, we five 

were fascinated with the futuristic scope that self-balancing devices 

hold, be it flying cars or compact car modules on two wheels, be it self-

stabilized and Bluetooth controlled cameras clicking in courteous moves 

of Hollywood stars or be it a simple self-stabilizing skateboard, 

controlled by your gestures, the idea of self-stabilizing skateboard 

controlled by our leg movements did take rounds in our fascinated team. 

As of delving deep into vast knowledge pool of self-controlled and 

stabilized devices, the team felt to get firsthand knowledge of various 

control mechanisms, IMUs, filters, robust mechanical system, and 

henceforth, concluded to engineer a manually controlled-cum-self 

stabilizing platform with three axis of freedom. 

  



2.2 Objectives and Goals 

 

 

 To demonstrate the techniques involved in balancing a 

platform. 

 To work on precise movements and accurate control of 

platform, with use of various algorithms and filtering 

process. 

 To understand the working of IMU. IMU work involves 

understanding the pin configurations of the IMUIMU and 

configuring the correct libraries for the IMU. 

 To identify the correct connections needed for all the 

peripheral hardware to communicate with the 

microcontroller.  

 Establishing lines of communication with the correct 

hardware pin addresses will allow for easy identification on 

how each individual piece of hardware will transmit and 

process data to and from the IMU. 

 To establish the power supply to each electronic components. 



3. Initial Research 

Without any prior knowledge of how a self-balancing cum camera 

controlled platform would work, further research was required to get an 

idea of what was possible for this project. Supplementary investigation 

was necessary such as to power the system, how to approach and which 

direction to take towards designing the software, how the platform 

would accomplish its main task of balancing. 

3.1 Initial Research of Coding 

Implementation 

The software development really boils down to the programming 

techniques used on this project. Creating a balancing platform with the 

use of a gyroscope requires that the program keep track of the 

gyroscope’s orientation and attempt to keep the gyroscope level. The 

conventional motor control method for keeping sensor readings within a 

certain threshold is the proportional integral derivative, or PID, control 

loop. PID control typically provides smooth control with minimal 

overshoot on corrective action. Although there are easier control 

methods like bang-bang, proportional (P), and Proportional-Derivative 

(PD), taking the extra time to factor in a smooth integral will be the best 

payoff for a smooth and efficient system. DCM is very effective 



algorithm which has authentic calibration of filters and PID whose 

constants can be manipulated according to the project. 

Analog output accelerometers and gyroscopes communicate with a 

Pulse-Width Modulation (PWM) signal, which most microcontrollers 

support. Digital output accelerometers and gyroscopes, such as the ones 

found on sparkfun.com, communicate using standard I2C protocol. 

There are a few different ways to communicate with motor controllers, 

which can be categorized by either analog or digital input. Analog input 

is done via PWM. Digital input can be done a couple ways. The first is 

by simulating an R/C signal that sets the speed and direction of the 

motor until specified at another time. The second is to use serial data to 

communicate the speed and direction of the motors. The main advantage 

to using serial data is that the microcontroller can communicate with the 

motor controller with just one serial port.   The shifting from 

control to stabilization mode is accomplished by using a switch between 

A0 pin of Arduino and a 9 V low current battery .Switching on implies 

change in Analog value at A0 pin which is used in our code to decide the 

respective mode.  

Arduino obtains tilt angle from IMU by using I2C Interface and then 

control servo motors using its PWM pins and the frequency of operation 

of servo motors can be made synonymous with that of IMU. 

 

 



3.2 INERTIAL MEASUREMENT UNIT: 

                   TILT SENSOR MODULE 

Tilt sensing is the crux of this project and the most difficult part as  

Well.  

The inertial sensors used are: 

 

 ADXL345 Accelerometer 

 ITG3200 Gyroscope 

 

An accelerometer measures the acceleration in specific directions. We 

can measure the direction of gravity w.r.t the accelerometer and get 

the tilt angle w.r.t the vertical. It is free from drifts and other errors. 

The angle of tilt can be measured from the acceleration along x-

direction as follows:  

Ax = g sin θ (θ is the angle w.r.t vertical)  

Az = g cos θ (Ax, Az are accelerations in x and z directions)  

 

 

 



 

For small angles, Ax = g θ  

So, θ = K * Ax (K is a constant)  

This problem is solved by using a Gyroscope. It would measure angular 

velocity and angle can be found by integrating.  

The rate gyro measures angular velocity and outputs a voltage Vg:  

Vg= ω + f(T) + eg  

Where f(T) represents the effect of temperature and eg represents 

error, which is not known. So the correct formula is:  

Angular Velocity ω = (Vg – Vat zero tilt)/Sensitivity [in V/(deg/s)]  

But this approach fails at slow angular velocities due to gyroscopic drift 

(small errors in slow velocities integrate and accumulate into a big error 

resulting in drift).  

 

In reality, we do not have static conditions, but dynamic conditions. So 

in case of dynamic accelerations, the accelerometer and gyroscope 

outputs are combined together using the Kalman Filtering Method 

Or Complimentary Filtering Method. 

 

 

  



3.3 Kalman and Complimentary Filters 

 

The Kalman filter operates recursively on streams of noisy input data to 

producea statistically optimal estimate of the underlying system state. 

The algorithm works in a two-step process : 

 In the prediction step, the Kalman filter produces estimates of the 

current state variables, along with their uncertainties. Once the 

outcome of the next measurement (necessarily corrupted with some 

amount of error, including random noise) is observed, these estimates 

are updated using a weighted average, with more weight being given to 

estimates with higher certainty. Because of the algorithm's recursive 

nature, it can run in real time using only the present input 

measurements and the previously calculated state; no additional past 

information is required. 

The Kalman filter uses a system's dynamics model (e.g., physical laws of 

motion), known control inputs to that system, and multiple sequential 

measurements (such as from sensors) to form an estimate of the 

system's varying quantities (its state) that is better than the estimate 

obtained by using any one measurement alone. As such, it is a common 

sensor fusion and data fusion algorithm. 

 

 



3.4   FreeIMU LIBRARIES 

 

IMU can be easily used on Arduino compatible boards using the 

Arduino FreeIMU library which implements sensor fusion MARG 

orientation filter ( a very efficient filter) enabling you to do easy and 

straightforward orientation sensing using tri axis accelerometer and 

gyroscope. It is very easy to implement and the functions used in this 

library is easily comprehended. We found it easily compatible with our 

6DOF IMU. 

Yaw drift was also major issue which posed serious challenge as our 

yaw motor vibrated after almost every 0.5 seconds .The drift was 

reduced by using an algorithm described in next section. 

In the library we find code for reading the raw data from the ITG3200 

and ADXL345 but not for the sensor fusion. For fusing their data, we 

use a very powerful DCM algorithm described below. 

 

 

  



3.5 dcm algorithm / PI Control Units 

The proportional, integral, and derivative terms are summed to calculate 

the output of the PID controller. Defining u(t) as the controller output, 

the final form of the PID algorithm is:  

 

Where:  

Kp: Proportional gain, a tuning parameter  

Ki: Integral gain, a tuning parameter  

Kd: Derivative gain, a tuning parameter  

e: Error  

t: Time or instantaneous time (the present)  

We tune the PID controller by varying the constants Kp, Kd and Ki and 

optimizing them. 

Process Variable (PV) vs time: 

 

 



DCM can be thought of a strong and robust algorithm for precise control 

of servo motors .It uses Euler angles , Direction Cosine Matrix(DCM) 

and Quaternion approaches. It has inbuilt Filters and  Proportional – 

Integral Control Units which in turn is very effective in giving calibrated 

outputs. 

The DCM algorithm uses Proportional – Integral Control units which are 

almost similar to PID except for the absence of Integral term. 

The tuning values , proportional constant (Kp) and derivative constant 

(Kd) changes in the code depending on how far the position of platform 

is from setpoint (balanced point). 

Recognizing that numerical errors, gyro drift, and gyro offset will 

gradually accumulate errors in the DCM elements, we use reference 

vectors to detect the errors, and a proportional plus integral (PI) negative 

feedback controller between the detected errors and the gyro inputs, to 

dissipate the errors faster than they can build up. GPS is used to detect 

yaw error, accelerometers are used to detect pitch and roll. 

 



 

On using this algorithm, we came to realise that Yaw angle accumulate 

leading to a significant value after some time inspite of no change in 

orientation. We analysed the Yaw output and accordingly made a simple 

algorithm that is very effective in reducing drift. What we basically did 

was to ignore extremely small change of orientation angles in every 

cycle. These angles being in the order of .01 degrees are almost 

impossible to replicate by the physical motion of hands, leading to quite 

stable data without loss of much accuracy.  

 

The code for which is below: 

 

#include <ADXL345.h> 
#include <bma180.h> 
#include <HMC58X3.h> 
#include <ITG3200.h> 
#include <MS561101BA.h> 
#include <I2Cdev.h> 
#include <MPU60X0.h> 
#include <EEPROM.h> 
 
 
//#define DEBUG 
#include "DebugUtils.h" 
#include "CommunicationUtils.h" 
#include "FreeIMU.h" 
#include <Wire.h> 
#include <SPI.h> 
#include <Servo.h> 
 
int raw_values[9]; 
//char str[512]; 
float ypr[3]; // yaw pitch roll 
float val[9]; 



Servo servo1; 
Servo servo2; 
Servo servo3; 
float old[3]; 
float apple[3]; 
int flag1; 
int flag2; 
 
// Set the FreeIMU object 
FreeIMU my3IMU = FreeIMU(); 
 
void setup() {  
  Serial.begin(9600); 
  Wire.begin(); 
  servo1.attach(8); 
  servo2.attach(9); 
  servo3.attach(10); 
  flag1=1; 
  flag2=1; 
  apple[0]=apple[1]=apple[2]=0; 
  old[0]=old[1]=old[2]=0; 
   
  delay(5); 
  my3IMU.init(); // the parameter enable or disable fast mode 
  delay(5); 
} 
 
void loop() {  
   
  my3IMU.getYawPitchRoll(ypr); 
  flag1 = analogRead(A0); 
  if (flag1<500) 
 
 {  flag2 = 1; 
 } 
  
 else 
 {  
   flag2 =0; 
 } 
  
  if(ypr[0]-old[0]<0.16 && ypr[0]-old[0]>-0.16) 
  { 
    Serial.print("Yaw: "); 



    Serial.print(apple[0]); 
  } 
  if((ypr[0]-old[0]<90 && ypr[0]-old[0]>=0.16) || (ypr[0]-old[0]>-90 && ypr[0]-old[0]<=-0.16)) 
  { 
    Serial.print("Yaw: "); 
    apple[0]=apple[0]+ypr[0]-old[0]; 
    Serial.print(apple[0]); 
    if(apple[0]>-90 && apple[0]<90) 
    { 
      if (flag2==1) 
     {  servo1.write(90+apple[0]); 
     } 
     else 
     {  
       servo1.write(90-apple[0]); 
     } 
      Serial.print("***"); 
    } 
  } 
  if(ypr[0]-old[0]>=90 || ypr[0]-old[0]<=-90) 
  { 
     
    Serial.print("Yaw: "); 
    Serial.print(apple[0]); 
     
  } 
 
  if((ypr[1]-old[1])>0.12 ||   (-ypr[1]+old[1])>0.12) 
  { 
    Serial.print("  Pitch: "); 
    apple[1]=ypr[1]; 
    Serial.print(apple[1]); 
          if (flag2==1) 
     {  servo2.write(92.5-apple[1]); 
     } 
     else 
     {  
       servo2.write(90+apple[1]); 
     } 
  } 
  else 
  { 
    Serial.print("  Pitch: "); 
    Serial.print(apple[1]); 



  } 
  if((ypr[2]-old[2])>0.12 ||   (-ypr[2]+old[2])>0.12) 
  { 
    Serial.print("  Roll: "); 
    apple[2]=ypr[2]; 
    Serial.print(apple[2]); 
          if (flag2==1) 
     {  servo3.write(87+apple[2]); 
     } 
     else 
     {  
       servo3.write(87-apple[2]); 
     } 
  } 
  else 
  { 
    Serial.print("  Roll: "); 
    Serial.print(apple[2]); 
  } 
  old[0]=ypr[0]; 
  old[1]=ypr[1]; 
  old[2]=ypr[2]; 
  Serial.print("        OYaw: "); 
  Serial.print(ypr[0]); 
  Serial.print("  OPitch: "); 
  Serial.print(ypr[1]); 
  Serial.print("  ORoll: "); 
  Serial.print(ypr[2]); 
  Serial.println(""); 
  delay(10); 
   
   
} 
 

 

  



3.6 POWER SUPPLY 

Designing the power supply for this project took serious 

considerations on what exactly to look for, how to layout the power 

supply to affect the rest of the system and what exact voltage and 

milliamp hours needed. 

For powered the whole mechanism, we have used a lead-acid 

rechargeable battery having following specifications:- 

Output voltage-6v 

Ampere hour-4.5 

Net weight-0.73±0.015 kg 

Dimension-70*47*101 

We have used this battery only because of its property of recharge and 

easily available as it is so cheap. 

We power the servo motors directly by using lead acid battery and 

arduino by using a voltage converter LM7805. 

 

A LM7805 Voltage Regulator is a voltage regulator that outputs +5 

volts.  



An easy way to remember the voltage output by a LM78XX series of 

voltage regulators is the last two digits of the number. A LM7805 ends 

with 05, thus it outputs 5 volts. The 78 part is just the convention that the 

chip makers use to denote the series of regulators that output voltage is 

positive. The other series of regulators, the LM79XX, is the series that 

output voltage is negative. 

The LM7805, like most other regulators, is a three-pin IC. 

Pin 1(input pin): The input pin is the pin that accepts the incoming DC 

voltage, which the voltage regulator will eventually regulate down to 

5volts. 

Pin 2(ground): Ground pin establishes the ground for the regulator. 

Pin3 (output Pin): The output pin is the regulated 5 volts DC. 

 

 

We have also used 9v hi-watt battery to give external interrupt to 

arguing for control and stabilizing mode. 

 



COMPONENTS 
1. IMU Digital Combo Board – 6DOF 

2. Arduino Mega 

3. Three DC Servo motors (High Torque Metal Geared) 

4. Motor Connectors  

5. Perspex and acrylic material for mechanical setup 

6. 6 Volt Rechargeable Battery  

 



4. Prototype 

In order to answer some questions about designing the self-balancing 

platform, it was decided to first design a small scale prototype. This 

section details on findings about hardware selection, and software 

approaches to solving the problem. In addition to the control scheme, the 

hardware selection was re-evaluated and re-imagined at almost every 

aspect of the hardware selection. From hardware design to software 

design, the group has undergone several important revisions that have 

helped obtain a better understanding for designing the final product:  

 

  



4.1 Hardware Selection 

4.1.1 6dof IMU 

IMU is an Inertial Measure Unit (sensors and hardware filter circuitry) 

this hardware consists of a 3 axis accelerometer (AdXL345) and three 

gyro sensors (ITG3200),  

Accelerometer gives the component of acceleration (g) along the three 

axes. Gyroscope gives the component of angular velocity along the three 

axes which is then integrated to find angle. 

Features: 

 Tiny!  

 Two mounting holes  

 ADXL345 Accelerometer  

 ITG-3200 gyro  

 3.3V input  

 I2C interface  

 

 



4.1.2 Motors 

These servo motors would provide the proper amount of power required 

to maintain its own weight as well as the weight of all the electrical and 

physical hardware while at the same time still maintaining balanced 

equilibrium. 

The shaft can be easily angled between 0 to 180 degrees. This wire is 

given a pulse application for a specified duration, which in turn controls 

the angle of the shaft in a particular position for a certain point of time. 

This modulation is famously referred to as the PWM (Pulse Width 

Modulation). The servomotor expects a coded signal every few seconds. 

The duration of the pulse determines the angular degree of the shaft. 

Servo motor that we have selected has torque of 15kg/cm, operating 

voltage of 4.8 V to 6 V, speed of 60degree/0.20sec, dimensions: length-

49.3mm, width-25.4mm, height-42.9mm and weight about 80 g. 

 

  



4.2. Mechanical Model 

4.2.1 Horizontal OR Vertical 

Based upon discussion over several prototypes we finally agreed upon 

two of them which seemed most suitable for our project considering 

mainly the form factor and feasibility. One of them is having the base 

and the platform on the same level and the other having a more 

conventional type of design having platform vertically above the main 

base. Considering aesthetics and being popular among most of the team 

members we finally agreed on to the second design. Placing motors 

perpendicular to each other gives us the advantage of having three 

degrees of rotation. We will be using self-made Aluminums brackets to 

hold the motors in their place.  

 

 

 



4.2.2DETAILED OVERVIEW PROTOTYPE 

 

The first motor is attached to the base and capable to rotate other two 

motors and the upper platform with camera about z direction. The other 

two motors gives the freedom to rotate the platform about x and y axis.  

Main base will consists of Arduino Mega, a battery and IMU circuit 

board that can be detached from the base to establish both control and 

stabilizing. While the IMU board is attached to the base, we can stabilize 

the upper platform with a camera or any other object placed on the 

platform. When we separate the IMU board we are able to control the 

camera holding platform about of the 3 axis, just by pressing a button.  

We used a 9v small battery to generate analog voltage at analog pin of 

arguing to trigger the control and stabilizing process. 

 

The final prototype: 

 

  



 

 

TEAM MEMBERS:    
AARSHEE MISHRA 

ANKIT RAJ 

ISH KUMAR JAIN 

PIYUSH JAIN 

SHUBHAM KUMAR 

 

 

 
 

MENTORED BY: 
RANVIJAY SINGH 

SONU AGARWAL 

VIPUL GUPTA 

 


